It’s time to stop flushing valuable data down the toilet.
What’s new: The Precision Health Toilet, a suite of sensors that attach to an ordinary commode, monitors human waste for input for signs of disease. It identifies individual users by scanning where the sun doesn’t shine.
How it works: The system, developed by a team led by Stanford radiologist and bioengineer Seung-min Park, analyzes excreta in three ways:
- Urinalysis: When an infrared sensor detects a stream, a urinalysis testing strip extends into the line of fire. Once soaked, the strip retracts and a camera records its findings. A transmitter sends the data to the cloud for analysis. Urine flow: A computer vision model measures the rate and volume of micturition by analyzing imagery from two high-speed cameras mounted below the bowl.
- Stool quality: When a user sits down, a sensor activates an LED light to illuminate the inside of the bowl and tells a drain-facing camera to begin recording. When the user has finished, the camera sends the video to a cloud server, where a convolutional neural network sorts frames depicting stool. A second CNN categorizes the feces into one of the seven categories of the Bristol Stool Form Scale. Physicians use these categories to evaluate bowel health.
- The system identifies individual users by fingerprint via a sensor on the flush handle. It also uses a camera inside the bowl to capture their unique “analprint,” a biometric composed of a pattern of 35 or so creases.
Results: The toilet performs well in the lab, but it’s still a prototype, not yet ready to aid in clinical diagnosis or disease screening. Its inventors hope to make it into a commercial product, which would require software upgrades as well as self-cleaning mechanisms for the sensors. In an interview with The Verge, Park estimated a commercial system would probably cost between $300 and $600.
Behind the news: Japanese toilet maker Toto was first to market with an AI-powered biomedical toilet. Its Flow Sky measures urine flow by analyzing the water level in the bowl. And the European Space Agency reportedly is developing toilets capable of detecting infectious diseases.
Why it matters: Human waste contains biomarkers for diabetes, metabolic disorders, and some cancers. Urine flow is an indicator of bladder, urinary tract, and prostate health. Like a heart monitor for excretory organs, a toilet mechanism of this type could monitor risk factors for dozens of diseases.
Yann LeCun is thinking: